Q. The probability density function of a Markov process is- Published on 04 Nov 15a. p(x1,x2,x3.......xn) = p(x1)p(x2/x1)p(x3/x2).......p(xn/xn-1)
b. p(x1,x2,x3.......xn) = p(x1)p(x1/x2)p(x2/x3).......p(xn-1/xn)
c. p(x1,x2,x3......xn) = p(x1)p(x2)p(x3).......p(xn)
d. p(x1,x2,x3......xn) = p(x1)p(x2 * x1)p(x3 * x2)........p(xn * xn-1)
ANSWER: p(x1,x2,x3.......xn) = p(x1)p(x2/x1)p(x3/x2).......p(xn/xn-1)