Maximum acceleration condition in Hookes joint - Theory of Machines - 1

Q.  Which among the following is the condition for maximum acceleration in Hooke's joint?
- Published on 06 Aug 15

a. cos 2 θ ≈ (2 sin2 α / 2 + sin2 α)
b. cos θ ≈ (2 sin2 α / 2 - sin2 α)
c. cos 2 θ ≈ (2 sin2 α / 2 - sin2 α)
d. cos 2 θ ≈ (sin2 α / 2 - sin2 α)

ANSWER: cos 2 θ ≈ (2 sin2 α / 2 - sin2 α)
 

    Discussion

  • Sravanthi   -Posted on 21 Oct 15
    Angular acceleration (α) of driven shaft is given as

    αm = [- ω2 cos sin2 α sin 2θ] / [1 – cos2 θ sin2 θ]2

    Condition of maximum acceleration is obtained when dα / dθ = 0

    When cos 2 θ ≈ (2 sin2 α / 2 - sin2 α) , αm is maximum.

Post your comment / Share knowledge


Enter the code shown above:

(Note: If you cannot read the numbers in the above image, reload the page to generate a new one.)