Stack - for Computer Science and MCA students
Write a program to check nesting of parentheses using stack.
#include<iostream.h>
using namespace std;
#define MAX 40
classCheckExpression
{
int stack[MAX];
int n, top;
public:
CheckExpression()
{
top = -1;
}
int matchParenthesis(char a, char b)
{
if(a=='['&& b==']')
return 1;
if(a=='{'&& b=='}')
return 1;
if(a=='('&& b==')')
return 1;
return 0;
} /*End of matchParenthesis()*/
void push(char item)
{
if(top==(MAX-1))
{
cout<<"Stack is Overflow\n";
return;
}
top = top + 1;
stack[top] = item;
} /*End of push()*/
char pop()
{
if(top==-1)
{
cout<<"Stack is Underflow\n";
exit(1);
}
return(stack[top--]);
} /*End of pop()*/
int check(charexp[])
{
int i;
char temp;
for(i = 0; i<strlen(exp); i++)
{
if(exp[i]=='(' || exp[i]=='{' || exp[i]=='[')
push(exp[i]);
if(exp[i]==')' || exp[i]=='}' || exp[i]==']')
if(top==-1) /*stack is empty*/
{
cout<<"Right parentheses are more than left parentheses\n";
return 0;
}
else
{
temp = pop();
if (!matchParenthesis(temp, exp[i]))
{
cout<<"Mismatched parentheses are : ";
cout<<temp<<" "<<exp[i];
return 0;
}
}
}
if(top==-1) /*stack empty*/
{
cout<<" Parentheses are Balanced\n";
return 1;
}
else
{
cout<<"Left parentheses more than right parentheses\n";
return 0;
}
}
};
void main()
{
CheckExpressionobj;
intvalidExp;
charexp[30];
cout<<"Enter the expression \t"<<endl;
cin>>exp;
validExp=obj.check(exp);
if(validExp==1)
cout<<"Valid expression\n";
else
cout<<"Invalid expression\n";
}
Convert given postfix expression into prefix expression and give stack trace.
A B C D ^ ^ E F G - * H I / * / + J *
Input | Action | Prefix Expression |
---|
A | Push into the stack | A |
B | Push into the stack | A, B |
C | Push into the stack | A, B, C |
D | Push into the stack | A, B, C, D |
^ | Pop
two elements and append operator as prefix and push expression back into stack. | A, B, ^CD |
^ | Pop two elements and append operator as prefix and push expression back into stack. | A, ^B^CD |
E | Push into the stack | A, ^B^CD, E |
F | Push into the stack | A, ^B^CD, E, F |
G | Push into the stack | A, ^B^CD, E, F, G |
- | Pop two elements and append operator as prefix and push expression back into stack. | A, ^B^CD, E, -FG |
* | Pop two elements and append operator as prefix and push expression back into stack. | A, ^B^CD, *E-FG |
H | Push into the stack | A, ^B^CD, *E-FG, H |
I | Push into the stack | A, ^B^CD, *E-FG, H, I |
/ | Pop two elements and append operator as prefix and push expression back into stack. | A, ^B^CD, *E-FG, /HI |
* | Pop two elements and append operator as prefix and push expression back into stack. | A, ^B^CD, **E-FG/HI |
/ | Pop two elements and append operator as prefix and push expression back into stack. | A, /^B^CD**E-FG/HI |
+ | Pop two elements and append operator as prefix and push expression back into stack. | +A /^B^CD**E-FG/HI |
J | Push into the stack | +A /^B^CD**E-FG/HI, J |
* | Pop two elements and append operator as prefix and push expression back into stack. | *+A /^B^CD**E-FG/HIJ |
Prefix Expression is => *+A /^B^CD**E-FG/HIJConvert infix to postfix form. Represent operator in stack and expression at each step.
P * (Q + R ^ S) – T ^ U * (V/W)
Solution:
Input | Operator in stack | Postfix Expression |
---|
P | Empty | P |
* | * | P |
( | *, ( | P |
Q | *, ( | PQ |
+ | *, (, + | PQ |
R | *, (, + | PQR |
^ | *, (, +, ^ | PQR |
S | *, (, +, ^ | PQRS |
) | * | PQRS^ + |
- | - | PQRS^+* |
T | - | PQRS^ +*T |
^ | -^ | PQRS^+*T |
U | -, ^ | PQRS^ +*TU |
* | -, * | PQRS^+*TU |
( | -, * | PQRS^+*TU^ |
V | -, * | PQRS^+*TU^V |
/ | -, / | PQRS^+*TU^V* |
W | -, / | PQRS^+*TU^V*W |
) | | PQRS^+*TU^V*W–/ |
Hence the postfix expression is : PQRS^+*TU^V*W–/